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Abstract— In the design of mechanism, a decision must 
first be taken regarding the type of mechanism to be 
employed. The number of links and connections required 
to give the desired degree of freedom must then be 
determined. Finally, the required dimensions needed to 
bring about a particular motion must be deduced. In the 
present study the main focus is to select a mechanism for 
parallel robotic arms. However there are a number of 
mechanisms available which can be used as robot hands. 
In the selection of mechanism for robotic hands, rigidity 
and grasping power are the main important 
considerations. In the present paper, a unique numerical 
method is used to measure the parallelism between the 
object and the ground link. This can be used to compare 
the robotic hands for rigidity and grasp.  
Keywords— Grasping capacity, Mechanism, 
Parallelism, Rigidity, Robotic arms 

 
I.  INTRODUCTION 

When greater rigidity is required then closed kinematic 
chains with multi degree of freedom are mostly used as 
grasping power and rigidity are the most important 
parameters that should be considered for planar parallel 
robot hands [1-8]. Number of fingers and parallelism 
decides grasp capacity. Parallelism between ground and 
object also affects grasping capacity. Greater parallelism 
means greater grasp and rigidity. 
A systematic study of robots and manipulators [1], now 
concentrating on “in-parallel” actuator-arrangements, 
reveals much geometry applicable either to entire robot-
arms or to parts of otherwise series-actuated arms. 
The study [2] presents solutions to the forward position 
and velocity problems of a planar eight-bar, three degree-
of-freedom, and closed-loop linkage. The linkage is 
proposed as a programmable platform-type robot which 
can both position and orient the platform. A sixth-order 
polynomial equation in the angular displacement of the 
platform is derived which indicates that six 
configurations, for a given set of input angular 
displacements, are possible. The polynomial equation is 
important in the study of the limit positions of the 
linkage. The forward velocity problem is solved using 
first-order partial derivatives of the four output angular 
displacements with respect to the three independent input 

displacements. The partial derivatives provide geometric 
insight into the kinematic analysis of the linkage. A 
graphical method, which utilizes the instantaneous centers 
of zero velocity, is introduced as a check of the velocity 
analysis. The method is solely a function of the 
configuration of the linkage and is, therefore, a practical 
alternative to other methods. 
The forward displacement analysis (FDA) in closed form 
of two classes of new parallel mechanisms derived from 
the Stewart Platform Mechanism (SPM) is presented in 
the study [3]. These mechanisms, when a set of actuator 
displacements is given, become multi-loop structures of 
type PRR-3S and PPR-3S, with P, R and S for prismatic, 
revolute and spherical pairs, whereas the SPM has the 
structure RRR-3S. Solving the FDA in closed form means 
finding all the possible positions and orientations of the 
output controlled link when a set of actuator 
displacements is given, or equivalently, finding all 
possible closures of the corresponding structure. The 
closed form analysis of the PRR-3S and PPR-3S 
structures here presented results in algebraic equations in 
one unknown of degree 16 and 12, respectively. Hence 16 
and 12 closures of the corresponding structures can be 
obtained.  
A comparative study of chains and mechanisms at the 
conceptual stage of design is expected to help the 
designer in selecting the best possible chain or 
mechanism for the specified task. To accomplish this 
designer should be able to read the characteristics of the 
kinematic chains based on their topology. It is only 
necessary to associate logically certain characteristics, 
weakness and strength of a chain to perform a task, with 
the structure of the chain and then generalize. Based on 
this belief work has been initiated to assess the ability of a 
chain to reveal some of the characteristics like structural 
error performance, dynamic behavior etc. in a 
comparative sense. In this study [4] criteria and 
measurements to compare kinematic chains and 
inversions for other characteristics like static behavior 
(mechanical advantage), compactness, stiffness and 
suitability as platform type robots, which are gaining 
importance, are presented. 
The number synthesis of kinematic chains is applied in 
this study [5] in several different ways in order to 
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synthesize chains suitable for application as robot hands; 
several examples of the structures so found are presented. 
So as to identify those kinematic chains that are more 
promising than others, the new concept of minimal sets of 
kinematic chains is defined. Another new concept, the 
variety of a kinematic chain, is defined and used to make 
generalizations about relative connectivity within 
kinematic chains, which has application in the selection 
of actuated pairs.  
Based on the topology of chains, quantitative methods are 
presented [6] in order to compare all the distinct chains, 
with the specified number of links and degree-of-freedom 
(d.o.f.), (i) for workspace and rigidity, (ii) to select the 
joint of the input link to introduce motion, and (iii) to test 
isomorphism, simply and uniquely. 
Parallelism can be associated with every closed kinematic 
chain or its representative graph [8]. Parallelism throws 
light on work space, rigidity, speed ratios (mechanical 
advantage), etc., and is of great help in selecting multi 
degree-of-freedom (dof) chains for robotic applications. 
Numerous distinct chains with the same number of links 
and dof exist. The extent of parallelism differs from chain 
to chain and hence a numerical measure is necessary to 
quantify the same so that the designer gains insight 
simply based on the structure without having to actually 
design all the distinct chains before selecting the best 
chain for the specified task.  

 

Fig. 1:  Four bar chain 

 

Fig. 2:  Five bar chain 

 

Fig. 3:  Eight bar chain 

 
II.  CALCULATION OF PARALLELISM FOR 

SINGLE LOOP CHAIN 
Single loop means the motion can be transferred from one 
link to other link by means of two paths only (path 
contains links and joints), as shown in Fig. 1, Fig. 2, etc. 

For example, if we consider Fig. 1 then motion can be 
transferred from link 1 to link 3 by two paths i.e. path 1 – 
2 – 3 or path 1 – 4 – 3. Path 1 – 2 – 3 and path 1 – 4 – 3 
forms a single loop, called loop 1 – 2 – 3 – 4. Therefore 
we can say that loop is formed when the joints of a link 
are connected to the corresponding joints of other link by 
means of different paths. For example, link 1 of Fig. 1 
contains two joints and link 3 also contains two joints. If 
we connect these joints then a loop is formed. Number of 
joints in a path depends upon number of links.  
If Ji, Jj, etc. be the number of joints along the path i, j, etc, 
and if J be the total number of joints in a loop then 
J = Ji + Jj + --------                 (1) 
The farthest link will have least parallelism and this is the 
link for which product of factorial of Ji, Jj, etc, is 
minimum. Factorial is taken in order to increase the 
interconnectivity between the links. Keeping this in mind, 
following relation can be used to calculate parallelism P 
between two links k and l 
Pkl = (∟Ji × ∟Jj) / L      (2) 
Where L is the loop size i.e. sum of number of links or 
number of joints.  
Consider three bar chain, as shown in Fig. 4, parallelism 
between links 1 and 2 is: 
P12 = (∟1 × ∟2) / 3 = 0.666 
Similarly, parallelisms between links 1, 3 and 2, 3 are 
0.666 and 0.666 respectively. When this happens then it 
forms a structure and no motion can be transferred.  
Consider four bar chain, as shown in Fig. 1, parallelism 
between links 1 and 3 is: 

 
P13 = (∟2 × ∟2) / 4 = 1 
Similarly, parallelisms between links 1, 2 and 1, 4 are 1.5 
and 1.5 respectively. 
Consider five bar chain, as shown in Fig. 2, parallelism 
between links 1 and 3 is: 
P13 = (∟2 × ∟3) / 5 = 2.4 
Similarly, parallelisms between links 1, 2 and 1, 4 and 1, 
5 are 4.8, 2.4 and 4.8 respectively. 
 
 

III.  MULTI LOOP CHAIN 
Multi loop means the motion can be transferred from one 
link to other link by means of more than two paths, as 
shown in Fig. 3 and Fig. 5. For example, if we consider 
Fig. 5, then motion can be transferred from link 1 to link 
3 by three paths i.e. 1 – 2 – 3, 1 – 4 – 3 and 1 – 5 – 3. Path 
1 – 2 – 3 and path 1 – 4 – 3 forms first loop. Path 1 – 4 – 
3 and path 1 – 5 – 3 forms second loop. Two loops are 
formed because one path is common in two loops. 
Similarly, if we consider Fig. 3, then motion can be 
transferred from link 1 to link 4 by four paths i.e. path 1 – 
2 – 3 – 4, path 1 – 7 – 4, path 1 – 8 – 4 and path 1 – 6 – 5 



International Journal of Advanced Engineering Research and Science (IJAERS)                               [Vol-3, Issue-12, Dec- 2016] 

https://dx.doi.org/10.22161/ijaers/3.12.30                                                                               ISSN: 2349-6495(P) | 2456-1908(O)                                 

www.ijaers.com                                                                                                                                                                            Page | 157 

– 4. Path 1 – 2 – 3 – 4 and path 1 – 7 – 4 forms first loop. 
Path 1 – 7 – 4 and path 1 – 8 – 4 forms second loop and 
path 1 – 8 – 4 and path 1 – 6 – 5 – 4 forms the third loop. 
Three loops are formed because two paths are common in 
every two adjacent loops.  
 
IV.  CALCULATION OF PARALLELISM FOR 

TWO SYMMETRICAL LOOPS 
Parallelism P between two links k and l in a multi loop 
chain (containing two symmetrical loops), as shown in 
Fig. 5, can be calculated by using the following steps: 
1. If the links k and l participate in both loops, then 
calculate the parallelism between the links by the method 
as mentioned in Section II, for each loop. Take either of 
the two values for parallelism between the links under 
consideration.  
2. If the links k and l participate in one loop only, then 
calculate the parallelism between the links by the method 
as mentioned in Section II.  
Consider the parallelism between the links 1 and 3 of five 
bar chain, as shown in Fig.5. Link 1 and link 3, both 
participates in loop 1 and loop 2. In other words we can 
say that link 1 and link 3 are connected by three paths 1 – 
2 – 3, 1 – 4 – 3, 1 – 5 – 3  and two separate loops are 
formed. This is because one path 1– 4 – 3 is common in 
both loops. Therefore parallelism between links 1 and 3 
will be due to both loops. Therefore, parallelism between 
links 1 and 3 considering loop 1 only: 
P13 = (∟2 × ∟2) / 4 = 1 
Parallelism between links 1 and 3 considering loop 2 
only: 
P13 = (∟2 × ∟2) / 4 = 1 
In this case, value of parallelism is same in both loops. 
Therefore, parallelism between the links is 1.  
Consider the parallelism between the links 1 and 2. Here, 
link 1 participates in loop1 and loop 2, but link 2 
participates in loop 1 only. In other words we can say that 
link 1 and link 2 are connected by two paths 1 – 2 and 1 – 
4 – 3 – 2, therefore only one loop is formed. Therefore 
parallelism between link 1 and link 2 will be due to one 
loop only. Therefore, parallelism between the links 1 and 
2 is: 
P12 = (∟1 × ∟3) / 4 = 1.5 
Consider the parallelism between the links 1 and 4. Link 
1 and link 4, both participate in loop 1 and loop 2. In 
other words we can say that link 1 and link 4 are 
connected by three paths 1 – 4, 1 – 2 – 4 and 1 – 5 – 3 – 
4. Path 1 – 4 is common, therefore two loops are formed. 
Therefore parallelism between link 1 and link 4 will be 
due to both loops. Therefore, parallelism between the 
links 1 and 4 considering loop 1, is: 
P14 = (∟1 × ∟3) / 4 = 1.5  

Parallelism between the links 1 and 4 considering loop 2, 
is: 
P14 = (∟1 × ∟3) / 4 = 1.5 
In this case, value of parallelism is same in both loops. 
Therefore, parallelism between the links is 1.5. Similarly, 
the parallelism between links 1 and 5 is also 1.5. 
 
V. CALCULATION OF PARALLELISM FOR 

TWO UNSYMMETRICAL LOOPS  
Parallelism P between two links k and l in a multi loop 
chain (containing two unsymmetrical loops), as shown in 
Fig. 3, can be calculated by using the following steps: 
1. If the links k and l participate in both loops, then 
calculate the parallelism between the links by the method 
as mentioned in Section II, for each loop. Take minimum 
of all the values for the farthest link and maximum of all 
the values for the nearest link. This is because the farthest 
link and nearest links will have least and greatest 
parallelism respectively. 
2. If the links k and l participate in one loop only, then 
calculate the parallelism between the links by the method 
as mentioned in Section II.  
Consider the parallelism between the links 1 and 4 of 
eight bar chain, as shown in Fig. 3. Link 1 and link 4, 
both participate in loop 1, loop 2 and loop 3. In other 
words, we can say that links 1 and 4 are connected by the 
paths 1 – 2 – 3 – 4, 1 – 7 – 4, 1 – 8 – 4 and 1 – 6 – 5 – 4, 
forming three different loops. Paths 1 – 7 – 4 and 1 – 8 – 
4 are common in every two adjacent loops. Two of them 
are symmetrical and one is unsymmetrical. Therefore 
parallelism between link 1 and link 4 will be due to all the 
three loops. Parallelism between the links 1 and 4 
considering loop 1, is: 
P14 = (∟2 × ∟3) / 5 = 2.4  
Parallelism between the links 1 and 4 considering loop 2, 
is: 
P14 = (∟2 × ∟2) / 4 = 1 
Parallelism between the links 1 and 4 considering loop 3, 
is: 
P14 = (∟2 × ∟3) / 5 = 2.4 
Therefore, parallelism between link 1 and 4 is minimum 
of all the values i.e. 1. This is because link 4 is the 
farthest link from link 1 and, therefore, link 4 will have 
least parallelism. 
Consider the parallelism between the links 1 and 2. Here, 
link 1 participates in loop1, loop 2 and loop3, but link 2 
participates in loop 1 only. In other words, we can say 
that link 1 and link 2 are connected by two paths 1 – 2 
and 1 – 7 – 4 – 3 – 2. Therefore, only one loop is formed 
and parallelism between link 1 and link 2 will be due to 
one loop only. Therefore, parallelism between the links 1 
and 2 is: 
P12 = (∟1 × ∟4) / 5 = 4.8  
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Consider the parallelism between the links 1 and 3. Here, 
link 1 participates in loop1, loop 2 and loop3, but link 3 
participates in loop 1 only. In other words, we can say 
that link 1 and link 3 are connected by two paths 1 – 2 – 3 
and 1 – 7 – 4 – 3. Therefore, only one loop is formed and 
parallelism between link 1 and link 3 will be due to one 
loop only. Therefore, parallelism between the links 1 and 
3 is: 
P13 = (∟2 × ∟3) / 5 = 2.4 
Consider the parallelism between the links 1 and 7. Here, 
link 1 participates in loop1, loop 2 and loop3, but link 7 
participates in loop 1 and loop 2 only. In other words, we 
can say that link 1 and link 7 are connected by two paths 
1 – 2 – 3 – 4 – 7, 1 – 7 of loop 1 and 1 – 7, 1 – 8 – 4 – 7 
of loop 2. Therefore, two loops are formed and 
parallelism between link 1 and link 7 will be due to two 
loops. Therefore, parallelism between the links 1 and 7, 
due to loop 1, is: 
P17 = (∟1 × ∟4) / 5 = 4.8 
Parallelism between the links 1 and 7, due to loop 2, is: 
P17 = (∟1 × ∟3) / 4 = 1.5 
Therefore, parallelism between link 1 and 7 is maximum 
of all the values i.e. 4.8. This is because link 7 is the 
nearest link from link 1 and, therefore link 7 will have 
greatest parallelism. Similarly the parallelism between the 
links 1 – 6, 1 – 5 and 1 – 8 are 4.8, 2.4 and 4.8 
respectively. 
 

VI.  EXPLANATION OF PARALLELISM, 
RIGIDITY AND GRASPING POWER IN 

CASE OF ROBOT HANDS 
Farthest link has least parallelism and nearer link has 
greater parallelism. Greater parallelism means more 
rigidity i.e. more stiffness and ultimately the more 
grasping power, a property useful to the designer when he 
considers kinematic chains for application as robotic 
hands.  
Though two links are considered serially connected, say 
links 1 and 3, as shown in Fig. 6, the second path 
necessary for parallelism to exist between those links 1 
and 3 is considered to consist of very large number of 
links and joints, as shown by dotted lines. In other words, 
parallelism between two links can also be considered as 
links in series separated by joints equal to the inverse of 
the parallelism. 
Consider the robot hand 1 of figure 7, developed by 
Tichler et. al [5]. This hand has two fingers “a” and “b” 
and three finger tips. This figure is redrawn as Fig. 8 for 
simplicity. Links are numbered 1, 2, etc and p, q and r are 
the finger tips which make point contact with the object. 
Frictional point contact between the object and the finger 
tips can be considered equivalent to spherical joints 

between the object and the finger tips [7]. In planar hands, 
these joints will be reduced to revolute joints.   
Consider the robot hand 1, which contains two fingers “a” 
and “b”. Finger “a” has two tips “p” and “q”. Finger “b” 
has one tip “r”. Since finger “a” have two tips “p” and 
“q”, therefore, first of all it should be converted into a 
single tip having single path above the ternary link. For 
that parallelism between the object and the ternary link 6 
is calculated first by using Equation 2 and then combined 
with the rest of the link assembly. 
Therefore, considering object, link 6 and link 7 as three 
bar loop, parallelism between link 6 and object is: 
P60 = (∟1 × ∟2) / 3 = 2 / 3 
Inverse of this is 3 / 2. It means that whole assembly 
above ternary link can be replaced by a binary link having 
a joint value of 1 and 0.5. This is shown in Fig. 9. Finally 
the parallelism between ground link and object is 
obtained by dividing the total joint value of the equivalent 
robot hand by the product of sum of joint values of each 
path. Consider robot hand 1, as shown in Figure 8. Its 
equivalent robot hand is shown in Fig 9. One path 
contains 4 joints and therefore has total joint value of 4. 
Other path contains 7 joints and therefore has total joint 
value of 6.5. Now the total joint value of the equivalent 
robot hand is 10.5. According to our theory, the 
parallelism between ground link and object is obtained by 
10.5 / (4 × 6.5) = 0.404. Similarly, the parallelism 
between ground link and object of other robot hands can 
also be calculated and the result is shown in the Table 1. 
For robot hand 9 of Fig. 7, calculate the parallelism 
between ground link and object for the two individual 
symmetrical loops and then take either of the two values, 
as discussed in Section 3.1.  

 
Fig. 4: Three bar chain 

 
Fig. 5:  Five bar chain 

 
Fig. 6:  Equivalent graph 
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Fig. 7: Robot hands 

 
Fig. 8: Robot hand (1) of Fig.7 

 
Fig. 9: Equivalent Robot hand of Fig.8 

 
VII.  RESULT 

Result can be summarized into the following points: 
1. Factorial is taken in order to increase the inter-
connectivity between the links. 
2. A different method [8] when applied to the robot 
hands, Fig. 7, gave the results which are shown in Table 
2. 
3. Though results obtained by the present method (shown 
in Table 1) and the result obtained by the method [8] are 
different, the pattern of the results are same. 
4. Unit parallelism between two links indicates that they 
are likely to have unit velocity ratio while greater 
parallelism indicates the possibility of high speed ratio. 
 

VIII.  CONCLUSION 
Farthest link has least parallelism and nearer link has 
greater parallelism. Greater parallelism means more 
rigidity i.e. more stiffness and ultimately the more 
grasping power, a property useful to the designer when he 

considers kinematic chains for application as robotic 
hands. From the Table 1 it is clear that robot hand 9 has 
greater parallelism and therefore greater rigidity. Unit 
parallelism between two links indicates that they are 
likely to have unit velocity ratio while greater parallelism 
indicates the possibility of high speed ratio. 
 

Table.1:  Parallelism of robot hands of Fig. 7 (in 
descending order) 

Robot 
hands 

      Parallelism   

9       1.500   
8       1.203   
6       0.720   
7       0.711   
3       0.639   
5       0.542   
2       0.464   
4       0.450   
1       0.404   

 
Table.2:  Parallelism of robot hands of Fig. 7 (in 

descending order) 

Robot 
hands 

      Parallelism   

9       0.75   
8       0.66   
6       0.55   
7       0.53   
3       0.51   
5       0.48   
2       0.46   
4       0.45   
1       0.42   
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